期权套利策略 探讨50ETF期权的无风险套利策略 - 财经 - 91文库

期权套利策略 探讨50ETF期权的无风险套利策略

91文库 2017-05-20 21:55:44

今天我们通过案例一起来探讨期权的无风险套利策略。

套利是通过构建资产组合,捕捉标的资产不合理定价所带来利润的行为。在实际操作中,套利的最大特点是在组合构建之时便已锁定了理论盈利水平,无论标的资产价格如何变化,套利组合均可获得大于0的现金流,也即真正意义上的无风险。换言之,套利是一种绝对收益产品,套利组合也通常为对冲策略组合。

理论上而言,一个成熟的资本市场,或者一个成熟的资本工具,套利机会是非常有限的,因为在发展到了一定程度后,更多的资金、更多的专业投资者已经介入,通过专业化的捕捉套利机会的软件使得一旦套利机会出现的时候,就被消灭掉,举例而言,2015年初的时候,分级基金还不是非常多投资者了解,经常会出现比较离谱的折溢价空间,但随着研究和参与的人越来越多,基本上现在已经很难找到套利机会了。

所以,对于期权的套利,我相信也会经历这么一个过程,目前而言期权还不是非常成熟,参与的群体较少,所以会有不合理的定价出现,也就是会出现套利机会,但因为期权更为复杂的机制,捕捉期权的套利机会,对于个人而言不是非常简单,涉及到多个数据的运算,所以参与期权套利是需要专业化的软件的,但对于编程和软件,笔者也不擅长,所以今日还是先从套利的逻辑来讲起,明白了什么情况下可以无风险套利,那么就可以去寻找或者定制相对应策略程序化套利交易软件。今天来看4个比较常用的套利思路:

1.单个期权上限套利

在任何时刻,看涨期权价格都不能超过标的资产价格,即期权价格的上限为标的资产价格。如果看涨期权价格超过标的资产价格,可以卖出看涨期权,同时以现价买进标的资产,从而获取无风险利润。这种套利机会基本上到目前为止我还没有发现过。

2. 单个期权下限套利

在任何时刻,不付红利的欧式看涨期权的价格应高于标的资产现价与执行价格的贴现值的差额与零的较大者。如果标的资产现价与执行价格的贴现值差额大于0,且看涨期权的价格低于资产现价与执行价格的贴现值差额,则可以进行看涨期权下限套利,即买入看涨期权,同时融券卖出标的资产而获得无风险利润。这种套利机会来说出现的次数不少,我们来看下图说明:

从图中我们可以看到,标的资产现价与执行价格的差值为2.35-1.80=0.55元(忽略利息成本,未进行贴现),而1.80执行价格的最新期权价格为0.508元<0.55元,也即出现了单个期权下限套利机会,我们可以0.508元买入行权价为1.80元的50ETF1512看涨期权,同时融券卖出2.35元的50ETF,在到期后我们不管50ETF价格是多少,相当于,归还融券卖出的50ETF的成本不会高于1.80+0.508=2.308元,也就是买券还券的成本不会高于2.308元,套利空间=(2.35-2.308)/2.35=1.79%。当然,我们知道,融券卖出是需要利息成本的,所以实际的套利利润需要扣除初期付出的资金成本,至于最后的套利利润折成的年化收益率是否满足您的预期决定您是否参与本次套利操作。

3. 平价套利

认购-认沽期权平价公式是指同一标的证券、到期日、行权价的欧式认购期权、认沽期权及标的证券价格间存在的确定性关系,认购期权价格与行权价的现值之和等于认沽期权的价格加上标的证券现价(c+PV(X)=p+S)。所谓确定性关系,就是这个公式在正常的情况下是相等的,所以当这个公式出现不相等的情况下,套利机会也就出现了。我们来看下图实例,也就出现了我们所说的套利机会。

从上图我们可以看到50ETF的价格为2.45元,而行权价为2.45元的认购期权和认沽期权的价格分别为0.0373元和0.0318元,假设这一天已经是该期权的最后行权日了,我们来看下平价公式两边的情况:

组合A=C+PV(X)=0.0373+2.45=2.4873元(最后一天,不存在需要贴现的情况)

组合B = p+S=0.0318+2.45=2.4818元

相对于组合B而言,组合A价格太高。正确的套利策略是买入组合B中的证券,同时卖出组合A中的证券,即买入认沽期权和股票,同时卖出认购期权。具体操作上,我们直接2.45元的价格买入1万股,同时买入1张2.45元行权价的认沽期权,卖出1张2.45元行权价的认购期权。这样操作以后不管收盘后50ETF价格在什么位置,假设高于2.45元,买入的认沽期权作废,而卖出的认购期权被行权,对手方从您手中2.45元买走了50ETF;再假设收盘价格低于2.45元,那么卖出的认购期权因为对手方会放弃权利而获得权利金的收入,而买入的认沽期权会行使卖出权利,卖出手中原来2.45买入的50ETF,所以不管高于还是低于2.45元,最后对于操作者来说,买入的股票都会以2.45元来卖出,而操作者得到的就是卖出认购期权的权利金收入和买入认沽期权的权利金的成本两者之差。

收益率=(0.0373-0.0318)/2.45=0.224%。

实话说这个收益并不高,但套利本身就是积少成多,是属于低风险稳健投资者的菜,没有风险的东西,如果一天能够有0.2%的固定收益,长期累积起来也是非常不错的收益。

上面我们说到的是平价公式的左边高于右边的情况,术语上我们称之为正向转换套利,而当公式的左边低于右边的时候,就存在了反向转换套利的机会。

假设某行权日,某标的股票价格为20元,行权价为20元,当日到期的20元的认购期权1.2,认沽期权1.3元. 来看下平价公式两边的情况:

组合A= c+PV(X)=20+1.2=21.2元

组合B= p+S =20+1.3=21.3元

也就是平价公式左边低于右边的情况出现,这种时候我们采取反向转换套利,买入组合A(买入20元行权价的认购期权),卖出组合B(20融券卖出标的和卖出20元行权价的认沽期权),可以获得0.1元的套利利润。

当然,不是所有的套利都要等到最后一天才去做,平时我们也可以利用平价公式来捕捉套利机会,只是需要进行在到期日之前的贴现(因为买入认购期权只付出权利金,相当于多出的资金可以去参与无风险固定理财而降低最后的参与成本)。

例如,假设股票价格为20元,行权价为20元,无风险利率为5%,3个月的欧式认购期权价格为1.3元,3个月的欧式认沽期权价格为0.9元,这时,

组合A:c+PV(X)=1.3+20*exp(-0.05*0.25)=21.05元 (贴现可以通过计算器来计算)

组合B: =p+S=0.9+20=20.9元

相对于组合B而言,组合A价格太高。正确的套利策略是买入组合B中的证券,同时卖出组合A中的证券,即买入认沽期权和股票,同时卖出认购期权,套利空间0.15元。

4.箱体套利

箱式套利又称盒式套利,是由一个牛市价差组合和一个熊市价差组合构成。箱型差价关系是建立在牛市差价期权与熊市差价期权之间的无套利原则之上。换言之,较低执行价格看涨期权价格与较高执行价格看涨期权价格之差,加上较高执行价格看跌期权价格与较低执行价格看跌期权价格之差(视为组合A),应当等于较高执行价格与较低执行价格之差的贴现值(视为组合B)。当A≠B时,可以通过买低卖高获得两者的价差收益。

这个相对比较复杂,这里就不展开作介绍了,可以回顾系列14的内容,其实已经对A和B做了一次比较,当时两者得出的结果是相当的,也就没有套利空间,这个计算过程会比较复杂,人工计算的时间成本比较高,而且当我们计算出来的时候可能套利空间已经错过了。所以箱体套利更需要专业的软件的辅助来捕捉机会,程序化交易。

总结来说,对于期权套利,我们不要有太高的收益期望值,适合低风险稳健专业投资者,结合一些专业的套利程序化软件,通过积少成多提高收益。